

Local Multilateration via Time
Difference of Arrivals in Multiple
Audio Recordings
Gorbunov M. Michael, Mundkowsky L. Elizabeth (School: East Brunswick High School, East Brunswick,
NJ, United States)

Introduction

We tackled the problem of accurate and affordable local positioning of targets (i.e. machinery, people
walking, bouncing ball). Our goal was to use the time difference of arrival of sounds produced by a
single sound across many microphones to determine the target’s location in an 1x1 meter area with +-5
centimeter accuracy.

Some existing solutions for positioning include GPS, radar, lidar, odometry, SLAM. These are certainly
really good solutions but they come with drawbacks. GPS and radar are accurate only at a large scale.
Lidar and SLAM fail when visual obstructions are present, and can be expensive (namely lidar).
Sound-based positioning, however, is less vulnerable to stationary obstructions and has been shown
possible. Researchers have previously successfully located different species of birds in an open
meadow by tracking the birds’ songs. The researchers were also able to locate an artificial source sound
composed of mixed real bird songs. Our goal is to recreate this result however, developing our own
algorithm for they used paid tools for sound processing.

Methodology
For our solution, we chose to have many microphones and one sound source because it appeared more
novel. Also, the sound source does not need to know of the data collection, and so could be useful for
wildlife tracking or sonar.

We did find some research on related problems but ultimately none of it made it into the final demo. Our
process was a matter of solving the next subproblem as we found them. For this proof of concept we
had fairly ideal conditions. To develop further we would use more research, ex: for noise cancellation.

As shown right, our setup involved using many microphones and one sound source.
Recording on all microphones at the same time, the sound will reach each microphone
at slightly different times. This is because the sound source is at a different distance
from each microphone. The Difference In Distances (DIDs) between different
microphone pairs is used to reconstruct the position of the sound.

Algorithm Explanation
Inputs
This algorithm works with multiple audio recordings of the same sound, i.e. the same events captured
from multiple microphones. Before being processed, some manual work is required to align the
start-time of recordings to be within 0.1 seconds of each other. Also, each audio sample needs a
corresponding noise profile.

For positioning regression to work, the positions of the microphones need to be known, as well as the
speed of sound. In our case, we used 343.8 m/s which corresponds with 70 degree air.

Hit Detection
The audio recordings for which this algorithm is designed consist of ‘hit’ sounds at different intervals,
generated by hitting a lego and battery together. Extracting the timing of these hits is done purely in the
amplitude domain.

First, the noise profile is used to generate a threshold. Whenever the
waveform exceeds this threshold, it is louder than the background noise and
registered as part of a hit. The threshold is simply the maximum of the noise
profile x 1.1.

Next, every point in the original recording that exceeds the threshold is
marked. Actually zooming into a green region, the result is noisy because
the waveform oscillates. To clean this up, a sustain filter is applied which only records a new hit if there
has been sufficient time since the threshold was previously exceeded.

Hit Grouping
Extracting the times of hits from multiple recordings, the next
problem is how to group them. They each happen at slightly
different times, and sometimes background noise will
register a hit on one recording but not another.

To group them, one track is arbitrarily chosen as the master
track, and other tracks are compared to it. For each master
hit, an interval of acceptable timings is created on which to
search for other hit times. If it finds that every track has a hit
within the interval, those hit times are grouped.

The fifth interval has no dots in it. This agrees with the waveform,
wherein the final laptop hit is not found in the iPhone recording.

Difference In Distance (DID) Calculations
Grouping the hit-times produces a time difference between hits for each audio recording. Time
differences between two recordings is the result of four main factors:

Time Difference = TDOA + TDOA Drift + Alignment Issues + Variance

In the previous step, Time Differences were found. This step we extract Time Difference of Arrivals
(TDOAs), i.e. differences due solely to the location of the sound. We control for drift and alignment.
Variance is mitigated by taking many samples, but cannot be removed.

TDOA drift is a phenomenon we discovered while processing the data. Likely due to small precision
errors, two recordings - even at the same sample rate - will misalign over time. The largest drift in our
microphone pairings is 1.6 x 10 -5 seconds of misalignment per second. Quantifying drift was done by
looking at the time difference at the same location over time, which without drift would be a flat line.
Adjusting for TDOA drift is simple. The drift value explains how much two recordings shift every second.
Because each hit is time-stamped, we can determine how much drift has misaligned two recordings.

During pre-processing, the recordings are manually lined up and thus have some offset solely due to
poor alignment. Honing in the alignment to acceptable levels is done by using time differences of a
known point. For example, in the test data presented, ten hits were made at a point equidistant to all
microphones i.e. those points have an expected offset of 0 seconds. For one microphone pair, those
time differences averaged 17 µS, so 17 µS was subtracted from all time differences for that pair.

Converting TDOA to a Difference In Distance (DID) is done by multiplying by the speed of sound. If two
microphones have a TDOA of 1 second, that sound is 343 m closer to one microphone than the other.

Position Regression
The final step is to take the DIDs (extracted above) and find the original
point. This is done with gradient descent over an error function.

The error function chosen is fairly simple. At every x & y position in the
plane, it is easy to calculate the distance to each microphone. Then, a
theoretical DID, i.e. the DID from this specific x & y for every microphone pair
can be calculated. Now, we have the DID that would be produced at this
coordinate, as well as the empirical DIDs. Summing the square differences
for each microphone-pair is our error function. Then gradient descent can be
trivially performed.

https://www.codecogs.com/eqnedit.php?latex=Error(x%2C%20y)%20%3D%20%5Csum%5E%7Bmic-pair%7D%7B%5C(DID_%7Bempirical%7D%20-%20DID_%7Bfrom-coordinate%7D%5C)%5E2%7D#0

Results

Position Predictions
To test our algorithm, we generated test data by creating sounds in known positions. Microphone
positions were determined via triangulation with the side lengths. Two of the test positions were similarly
computed. One position however was done in reverse - it was specifically chosen to be equidistant to all
microphones, and is used for alignment calibration. Below is a diagram of the microphone placements,
as well as sketches of the three locations tested, marked with a triangle, star, and square symbol.

Our algorithm produced the following predictions:

 Triangle location Square location

The neon green symbols indicate the position predicted via measurements and triangulation. Both
figures have roughly the same scale - triangle positions have more spread. Note, the predictions for the
star location are not shown. Those positions were used for calibration so they are correct by definition.

Below are quantitative results for the average of these two clumps.

The margins of error for the measured values are greater than the number of decimals suggests, being around +- .02 m.

 Avg Predicted X Avg Predicted Y Measured X Measured Y Distance (cm)

Triangle 0.274 0.832 0.3083 0.846 3.734

Square 1.415 0.319 1.41268 0.3206 0.318

Discussion

Significance
Our results show that affordable, sufficiently accurate localization by sound from any source can be
achieved and suggests that localization in real time is possible. We do not have data to determine the
true error of our approach but our data does agree fairly well with triangulation-based measurements.
Nevertheless, our prototype still suggests that acoustic localization can be accurate on a small scale.

We already knew that local positioning from TDOAs is feasible from an existing study that used bird calls
to identify birds, but our results expand on this by extending to any percussive sound. Any sound louder
than a certain threshold above background noise can be identified and have its TDOA extracted, as we
did with the battery striking the lego. The bird call positioning study also used the Canary sound analysis
package, which costs $200, to extract the TDOAs. Our prototype improves on the cost of acoustic
localization because we wrote our algorithm to identify the attacks and extract the TDOAs at no cost.
However, because our algorithm is so simple it would fail when hit sounds are made too close to each
other, and would need some tuning when working on larger distances, due to the larger time differences.

Issues
Initially, we planned to extract the TDOAs using the frequency domain of the recordings, but this proved
problematic when we found some of the background noise shared frequencies with our target sound.
After revising our hit detection algorithm to rely on the amplitude domain instead, however, this issue
was resolved and another issue arose. Using the amplitude domain, we needed to set different
thresholds for each recording because the background noise was not at the same level for all the

recordings. However, we solved this by looking at the noise profiles of the recordings to determine the
thresholds as explained in hit detection.

One unexpected issue we encountered was the difference in sampling rate between the iPad and
iPhone because the difference in tick frequency made it impossible to perfectly align those recordings.
We resolved this by converting the time units of all the recordings to microseconds, with 1 tick equaling
20.833 uS at 48kHz and a tick equaling 22.675 uS at 44.1kHz. We only did this conversion once
because it introduces rounding error as the microseconds are stored as integers.

The drift in the TDOAs was also unexpected. We expected small random changes or no changes in the
TDOAs because the source sound was stationary. With our calibration set up specifically, we expected
there to be small to zero difference between the TDOAs because the microphones were equidistant from
the battery and lego. However, interestingly, the difference in TDOAs generally increased as time passed
even though the source sound was stationary. To account for this, we found how much the TDOAs
misaligned from hit to hit, the drift value, and subtracted this drift value from the TDOAs.

We believe our prototype could be expanded to function in real-time. No time is required in generating a
frequency domain because we rely on the amplitude domain, and noise reduction is not necessary either
as long as the target sound is adequately loud. One obstacle in functioning in real time, however, is that
the audio data being recorded by the microphones must be transferred to a computer quickly. There
would also be some necessary delay before the source sound’s position could be predicted because
enough time needs to pass to allow for the TDOA drift to happen so we can calculate drift value.

Conclusions
Our proof of concept demonstrates successful localization of sound. Thresholding for hit detection is
certainly somewhat crude but it works with our somewhat ideal audio. We were hoping to be able to do
more work with signal processing, potentially introducing noise or doing pattern recognition to cross
reference among recordings. However, all other parts of the algorithm are as sophisticated as they need
to be, and our variance falls within our goal.

Potential Applications
A similar solution has already been used for wildlife tracking, specifically locating birds from their calls.

If water-proofed, our work could also be used in marine environments or generally obscured areas like
forests where sound travels better and the targets are not visible. With sonar specifically, a fleet of
submarines each acting as a microphone could listen to incoming sound waves (from wildlife or other
submarine’s sonar pings) and use our algorithm to determine where the original sound was coming from.

References

While many of these items see no apparent influence on the final result, they were useful tangents while
we considered which specific approach to take.

Accuracy of a Passive Acoustic Location System (Mcgregor, et al) - Bird positioning via similar technique

These three links would be heavily used if development continued to work with noisier recordings
Adaptive Whitening for Improved Real-Time Audio Onset Detection (Stowell, Plumbley)
Audacity noise removal algorithm
Onset detection algorithm specifically for music

Sonic Visualizer - was useful to see our options and gut check that a certain approach could work
Matplotlib - almost all graphs were generated via Python

https://www.researchgate.net/publication/232944977_Accuracy_of_a_passive_acoustic_location_system_Empirical_studies_in_terrestrial_habitats
http://c4dm.eecs.qmul.ac.uk/papers/2007/StowellPlumbley07-icmc.pdf
https://github.com/audacity/audacity/blob/master/src/effects/NoiseReduction.cpp
http://onsetsds.sourceforge.net/index.html
https://sonicvisualiser.org/
https://matplotlib.org/

