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Introduction   

We   tackled   the   problem   of   accurate   and   affordable   local   positioning   of   targets   (i.e.   machinery,   people   
walking,   bouncing   ball).   Our   goal   was   to   use   the   time   difference   of   arrival   of   sounds   produced   by   a   
single   sound   across   many   microphones   to   determine   the   target’s   location   in   an   1x1   meter   area   with   +-5   
centimeter   accuracy.     
  

Some   existing   solutions   for   positioning   include   GPS,   radar,   lidar,   odometry,   SLAM.   These   are   certainly   
really   good   solutions   but   they   come   with   drawbacks.   GPS   and   radar   are   accurate   only   at   a   large   scale.   
Lidar   and   SLAM   fail   when   visual   obstructions   are   present,   and   can   be   expensive   (namely   lidar).   
Sound-based   positioning,   however,   is   less   vulnerable   to   stationary   obstructions   and   has   been   shown   
possible.   Researchers   have   previously   successfully   located   different   species   of   birds   in   an   open   
meadow   by   tracking   the   birds’   songs.   The   researchers   were   also   able   to   locate   an   artificial   source   sound   
composed   of   mixed   real   bird   songs.   Our   goal   is   to   recreate   this   result   however,   developing   our   own   
algorithm   for   they   used   paid   tools   for   sound   processing.   
  
  
  

    



  

Methodology  
For   our   solution,   we   chose   to   have   many   microphones   and   one   sound   source   because   it   appeared   more   
novel.   Also,   the   sound   source   does   not   need   to   know   of   the   data   collection,   and   so   could   be   useful   for   
wildlife   tracking   or   sonar.   
  

We   did   find   some   research   on   related   problems   but   ultimately   none   of   it   made   it   into   the   final   demo.   Our   
process   was   a   matter   of   solving   the   next   subproblem   as   we   found   them.   For   this   proof   of   concept   we   
had   fairly   ideal   conditions.   To   develop   further   we   would   use   more   research,   ex:   for   noise   cancellation.   
  

As   shown   right,   our   setup   involved   using   many   microphones   and   one   sound   source.   
Recording   on   all   microphones   at   the   same   time,   the   sound   will   reach   each   microphone   
at   slightly   different   times.   This   is   because   the   sound   source   is   at   a   different   distance   
from   each   microphone.   The   Difference   In   Distances   (DIDs)   between   different   
microphone   pairs   is   used   to   reconstruct   the   position   of   the   sound.   
  
  

Algorithm   Explanation   
Inputs   
This   algorithm   works   with   multiple   audio   recordings   of   the   same   sound,   i.e.   the   same   events   captured   
from   multiple   microphones.   Before   being   processed,   some   manual   work   is   required   to   align   the   
start-time   of   recordings   to   be   within   0.1   seconds   of   each   other.   Also,   each   audio   sample   needs   a   
corresponding   noise   profile.   
  



  

For   positioning   regression   to   work,   the   positions   of   the   microphones   need   to   be   known,   as   well   as   the   
speed   of   sound.   In   our   case,   we   used   343.8   m/s   which   corresponds   with   70   degree   air.   
  
  

Hit   Detection   
The   audio   recordings   for   which   this   algorithm   is   designed   consist   of   ‘hit’   sounds   at   different   intervals,   
generated   by   hitting   a   lego   and   battery   together.   Extracting   the   timing   of   these   hits   is   done   purely   in   the   
amplitude   domain.   
  

First,   the   noise   profile   is   used   to   generate   a   threshold.   Whenever   the   
waveform   exceeds   this   threshold,   it   is   louder   than   the   background   noise   and   
registered   as   part   of   a   hit.   The   threshold   is   simply   the   maximum   of   the   noise   
profile   x   1.1.   
  

Next,   every   point   in   the   original   recording   that   exceeds   the   threshold   is   
marked.   Actually   zooming   into   a   green   region,   the   result   is   noisy   because   
the   waveform   oscillates.   To   clean   this   up,   a   sustain   filter   is   applied   which   only   records   a   new   hit   if   there   
has   been   sufficient   time   since   the   threshold   was   previously   exceeded.   
  
  

Hit   Grouping   
Extracting   the   times   of   hits   from   multiple   recordings,   the   next   
problem   is   how   to   group   them.   They   each   happen   at   slightly   
different   times,   and   sometimes   background   noise   will   
register   a   hit   on   one   recording   but   not   another.   



  

  
To   group   them,   one   track   is   arbitrarily   chosen   as   the   master   
track,   and   other   tracks   are   compared   to   it.   For   each   master   
hit,   an   interval   of   acceptable   timings   is   created   on   which   to   
search   for   other   hit   times.   If   it   finds   that   every   track   has   a   hit   
within   the   interval,   those   hit   times   are   grouped.   

The   fifth   interval   has   no   dots   in   it.   This   agrees   with   the   waveform,   
wherein   the   final   laptop   hit   is   not   found   in   the   iPhone   recording.   

  
Difference   In   Distance   (DID)   Calculations   
Grouping   the   hit-times   produces   a   time   difference   between   hits   for   each   audio   recording.   Time   
differences   between   two   recordings   is   the   result   of   four   main   factors:   

Time   Difference   =   TDOA   +   TDOA   Drift   +   Alignment   Issues   +   Variance   

In   the   previous   step,   Time   Differences   were   found.   This   step   we   extract   Time   Difference   of   Arrivals   
(TDOAs),   i.e.   differences   due   solely   to   the   location   of   the   sound.   We   control   for   drift   and   alignment.   
Variance   is   mitigated   by   taking   many   samples,   but   cannot   be   removed.   
  

TDOA   drift   is   a   phenomenon   we   discovered   while   processing   the   data.   Likely   due   to   small   precision   
errors,   two   recordings   -   even   at   the   same   sample   rate   -   will   misalign   over   time.   The   largest   drift   in   our   
microphone   pairings   is   1.6   x   10 -5    seconds   of   misalignment   per   second.   Quantifying   drift   was   done   by   
looking   at   the   time   difference   at   the   same   location   over   time,   which   without   drift   would   be   a   flat   line.   
Adjusting   for   TDOA   drift   is   simple.   The   drift   value   explains   how   much   two   recordings   shift   every   second.   
Because   each   hit   is   time-stamped,   we   can   determine   how   much   drift   has   misaligned   two   recordings.   
  



  

During   pre-processing,   the   recordings   are   manually   lined   up   and   thus   have   some   offset   solely   due   to   
poor   alignment.   Honing   in   the   alignment   to   acceptable   levels   is   done   by   using   time   differences   of   a   
known   point.   For   example,   in   the   test   data   presented,   ten   hits   were   made   at   a   point   equidistant   to   all   
microphones   i.e.   those   points   have   an   expected   offset   of   0   seconds.   For   one   microphone   pair,   those   
time   differences   averaged   17   µS,   so   17   µS   was   subtracted   from   all   time   differences   for   that   pair.   
  

Converting   TDOA   to   a   Difference   In   Distance   (DID)   is   done   by   multiplying   by   the   speed   of   sound.   If   two   
microphones   have   a   TDOA   of   1   second,   that   sound   is   343   m   closer   to   one   microphone   than   the   other.  
  
  

Position   Regression   
The   final   step   is   to   take   the   DIDs   (extracted   above)   and   find   the   original   
point.   This   is   done   with   gradient   descent   over   an   error   function.     
  

The   error   function   chosen   is   fairly   simple.   At   every   x   &   y   position   in   the   
plane,   it   is   easy   to   calculate   the   distance   to   each   microphone.   Then,   a   
theoretical   DID,   i.e.   the   DID   from   this   specific   x   &   y   for   every   microphone   pair   
can   be   calculated.   Now,   we   have   the   DID   that   would   be   produced   at   this   
coordinate,   as   well   as   the   empirical   DIDs.   Summing   the   square   differences   
for   each   microphone-pair   is   our   error   function.   Then   gradient   descent   can   be   
trivially   performed.   
  

    

https://www.codecogs.com/eqnedit.php?latex=Error(x%2C%20y)%20%3D%20%5Csum%5E%7Bmic-pair%7D%7B%5C(DID_%7Bempirical%7D%20-%20DID_%7Bfrom-coordinate%7D%5C)%5E2%7D#0


  

Results   

Position   Predictions   
To   test   our   algorithm,   we   generated   test   data   by   creating   sounds   in   known   positions.   Microphone   
positions   were   determined   via   triangulation   with   the   side   lengths.   Two   of   the   test   positions   were   similarly   
computed.   One   position   however   was   done   in   reverse   -   it   was   specifically   chosen   to   be   equidistant   to   all   
microphones,   and   is   used   for   alignment   calibration.   Below   is   a   diagram   of   the   microphone   placements,   
as   well   as   sketches   of   the   three   locations   tested,   marked   with   a   triangle,   star,   and   square   symbol.   
  

  
  



  

Our   algorithm   produced   the   following   predictions:   

  
   Triangle   location   Square   location   

  
The   neon   green   symbols   indicate   the   position   predicted   via   measurements   and   triangulation.   Both   
figures   have   roughly   the   same   scale   -   triangle   positions   have   more   spread.   Note,   the   predictions   for   the   
star   location   are   not   shown.   Those   positions   were   used   for   calibration   so   they   are   correct   by   definition.   
  

Below   are   quantitative   results   for   the   average   of   these   two   clumps.   
  

The   margins   of   error   for   the   measured   values   are   greater   than   the   number   of   decimals   suggests,   being   around   +-   .02   m.   

   Avg   Predicted   X    Avg   Predicted   Y    Measured   X    Measured   Y    Distance   (cm)   

Triangle    0.274    0.832    0.3083    0.846    3.734   

Square    1.415    0.319    1.41268    0.3206    0.318   



  

Discussion   

Significance   
Our   results   show   that   affordable,   sufficiently   accurate   localization   by   sound   from   any   source   can   be   
achieved   and   suggests   that   localization   in   real   time   is   possible.   We   do   not   have   data   to   determine   the   
true   error   of   our   approach   but   our   data   does   agree   fairly   well   with   triangulation-based   measurements.   
Nevertheless,   our   prototype   still   suggests   that   acoustic   localization   can   be   accurate   on   a   small   scale.     
  

We   already   knew   that   local   positioning   from   TDOAs   is   feasible   from   an   existing   study   that   used   bird   calls   
to   identify   birds,   but   our   results   expand   on   this   by   extending   to   any   percussive   sound.   Any   sound   louder   
than   a   certain   threshold   above   background   noise   can   be   identified   and   have   its   TDOA   extracted,   as   we   
did   with   the   battery   striking   the   lego.   The   bird   call   positioning   study   also   used   the   Canary   sound   analysis   
package,   which   costs   $200,   to   extract   the   TDOAs.   Our   prototype   improves   on   the   cost   of   acoustic   
localization   because   we   wrote   our   algorithm   to   identify   the   attacks   and   extract   the   TDOAs   at   no   cost.   
However,   because   our   algorithm   is   so   simple   it   would   fail   when   hit   sounds   are   made   too   close   to   each   
other,   and   would   need   some   tuning   when   working   on   larger   distances,   due   to   the   larger   time   differences.   
  
  

Issues   
Initially,   we   planned   to   extract   the   TDOAs   using   the   frequency   domain   of   the   recordings,   but   this   proved   
problematic   when   we   found   some   of   the   background   noise   shared   frequencies   with   our   target   sound.   
After   revising   our   hit   detection   algorithm   to   rely   on   the   amplitude   domain   instead,   however,   this   issue   
was   resolved   and   another   issue   arose.   Using   the   amplitude   domain,   we   needed   to   set   different   
thresholds   for   each   recording   because   the   background   noise   was   not   at   the   same   level   for   all   the   



  

recordings.   However,   we   solved   this   by   looking   at   the   noise   profiles   of   the   recordings   to   determine   the   
thresholds   as   explained   in   hit   detection.   
  

One   unexpected   issue   we   encountered   was   the   difference   in   sampling   rate   between   the   iPad   and   
iPhone   because   the   difference   in   tick   frequency   made   it   impossible   to   perfectly   align   those   recordings.   
We   resolved   this   by   converting   the   time   units   of   all   the   recordings   to   microseconds,   with   1   tick   equaling   
20.833   uS   at   48kHz   and   a   tick   equaling   22.675   uS   at   44.1kHz.   We   only   did   this   conversion   once   
because   it   introduces   rounding   error   as   the   microseconds   are   stored   as   integers.     
  

The   drift   in   the   TDOAs   was   also   unexpected.   We   expected   small   random   changes   or   no   changes   in   the   
TDOAs   because   the   source   sound   was   stationary.   With   our   calibration   set   up   specifically,   we   expected   
there   to   be   small   to   zero   difference   between   the   TDOAs   because   the   microphones   were   equidistant   from   
the   battery   and   lego.   However,   interestingly,   the   difference   in   TDOAs   generally   increased   as   time   passed   
even   though   the   source   sound   was   stationary.   To   account   for   this,   we   found   how   much   the   TDOAs   
misaligned   from   hit   to   hit,   the   drift   value,   and   subtracted   this   drift   value   from   the   TDOAs.   
  

We   believe   our   prototype   could   be   expanded   to   function   in   real-time.   No   time   is   required   in   generating   a   
frequency   domain   because   we   rely   on   the   amplitude   domain,   and   noise   reduction   is   not   necessary   either   
as   long   as   the   target   sound   is   adequately   loud.   One   obstacle   in   functioning   in   real   time,   however,   is   that   
the   audio   data   being   recorded   by   the   microphones   must   be   transferred   to   a   computer   quickly.   There   
would   also   be   some   necessary   delay   before   the   source   sound’s   position   could   be   predicted   because   
enough   time   needs   to   pass   to   allow   for   the   TDOA   drift   to   happen   so   we   can   calculate   drift   value.      



  

Conclusions   
Our   proof   of   concept   demonstrates   successful   localization   of   sound.   Thresholding   for   hit   detection   is   
certainly   somewhat   crude   but   it   works   with   our   somewhat   ideal   audio.   We   were   hoping   to   be   able   to   do   
more   work   with   signal   processing,   potentially   introducing   noise   or   doing   pattern   recognition   to   cross   
reference   among   recordings.   However,   all   other   parts   of   the   algorithm   are   as   sophisticated   as   they   need   
to   be,   and   our   variance   falls   within   our   goal.   
  
  

Potential   Applications   
A   similar   solution   has   already   been   used   for   wildlife   tracking,   specifically   locating   birds   from   their   calls.   
  

If   water-proofed,   our   work   could   also   be   used   in   marine   environments   or   generally   obscured   areas   like   
forests   where   sound   travels   better   and   the   targets   are   not   visible.   With   sonar   specifically,   a   fleet   of   
submarines   each   acting   as   a   microphone   could   listen   to   incoming   sound   waves   (from   wildlife   or   other   
submarine’s   sonar   pings)   and   use   our   algorithm   to   determine   where   the   original   sound   was   coming   from.   
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While   many   of   these   items   see   no   apparent   influence   on   the   final   result,   they   were   useful   tangents   while   
we   considered   which   specific   approach   to   take.   
  

Accuracy   of   a   Passive   Acoustic   Location   System   (Mcgregor,   et   al)    -   Bird   positioning   via   similar   technique   
  

These   three   links   would   be   heavily   used   if   development   continued   to   work   with   noisier   recordings   
Adaptive   Whitening   for   Improved   Real-Time   Audio   Onset   Detection   (Stowell,   Plumbley)   
Audacity   noise   removal   algorithm   
Onset   detection   algorithm   specifically   for   music   
  

Sonic   Visualizer    -   was   useful   to   see   our   options   and   gut   check   that   a   certain   approach   could   work   
Matplotlib    -   almost   all   graphs   were   generated   via   Python   
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