
Simple Collision Engine
Michael Gorbunov

A still image attempting to show collision response (motion).
View the demo to actually try out the result.

Demo
View a live demo of the result here: https://mrgorbunov.github.io/get-get-golf/

Overview
Winter break during 12th grade (Dec 2020) I thought it would be cool to make a golf
game. However, it would’ve been even cooler if I also wrote the physics engine. So, I
wrote the physics engine and then never finished the game. Nonetheless creating the
engine was a very exciting week scribbling geometry problems in my notebook.

The big thing this taught me was the power of dot products, which as you will see are
everywhere. Also, to keep things simple I stuck to 2D, and only considered collisions
between circles and line segments. Compared to GJK or really any 3D geometry
problem, everything here is trivial. However, I came into this project really only
understanding that a dot product is |a||b|cos(theta), and its relevance with
projections. This should be evidence of my ability to work through problems.

The following also may not seem like a lot, but it’s all that was necessary for the
engine.

https://mrgorbunov.github.io/get-get-golf/

Collision Detection
Every physics tick, the engine checks for collisions between the circle and all
segments. This means it is important to be able to quickly say no, because most checks
will not be collisions.

Collisions are thus checked in the following order, where each step assumes the
previous one was inconclusive, but still narrows down possibilities.

1. Distance
This can definitively say no.

If the circle is further from the
line than its radius, then it is not
touching the segment. However,
this check is done against the
line, not the line segment, so it
cannot definitively say yes.

Calculating this is done by
projecting the vector from an
endpoint onto the normal
vector, which in this case
simplifies to a dot product.

This cannot definitively say a collision happens, see below:

Note: Distance between a line and a point was covered in my Calc III class so this
wasn’t new.

2. Sign of Dot Products
At this point, we know the circle is insertecting the line, but it might not be
intersecting the line segment.

An important property of dot products is their sign, which tells whether two vectors
point in the same direction. For a circle, we
can generate a vector pointing to each end
point on a segment. Then take the dot
product of the vector and a vector spanning
the segment, and the signs will tell us
whether the circle is within the segment.

This check is not exhaustive. It tells whether
the circle center is along the line segment,
but if the circle can still intersect the line
even if the center is just o� to the side.

Note: In writing this report, I realised I could
simply have taken the dot product b1 with b2

and used the sign of that. This would’ve been
simpler and avoided the need to calculate
vector v.

3. Collision with Segment Endpoints
The final check necessary is to see if the circle encloses either endpoint of the line
segment. This is done with a simple distance calculation, wherein if the either
endpoint is less than the radius away from the center, the circle is colliding.

In implementation, square distance and square radius are used to avoid an expensive
square root calculation.

Collision Response
Collision Location
The simulation is done via Euler integration, where each physics tick the ball moves
forward by some small vector along its velocity. When a collision is detected, the ball
is already somewhat inside the line segment, however for a clean response it’s
important to push the ball back out of the segment.

While this could’ve been mathematically determined, I saw an easier solution. I just
binary searched along the movement vector to determine at what point the collision
first happened. Since this is a computer science item, I will not discuss it further.

Changing Velocity Vector
For these collisions, I assume elasticity. Because the walls do not move, there is 0
change to speed, and the ball’s velocity simply reflects along the segment.

The exciting observation is that this reflected
vector is also equal to the original vector plus
some scalar quantity of the normal vector
(shown left).

This gives 2 restrictions for the reflected vector:

1.

2.

Because n is normalized, k in the second
equation is equal to || v’ - v ||. The picture
shows, this quantity equals twice the height of v
projected onto n. So, k is equals 2 ∙ || projn(v) ||,
which simplifies to 2 ∙ (n * v).

Breaking this down component by component,
the following very simple equations come out:

https://www.codecogs.com/eqnedit.php?latex=%5C%7C%20%5Cvec%7B%5Cmathbf%7Bv%7D'%7D%20%5C%7C%20%3D%20%5C%7C%20%5Cvec%7B%5Cmathbf%7Bv%7D%7D%20%5C%7C#0
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7B%5Cmathbf%7Bv'%7D%7D%20%3D%20%5Cvec%7B%5Cmathbf%7Bv%7D%7D%20%2B%20k%20%5Ccdot%20%5Cvec%7B%5Cmathbf%7Bn%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=v'_%7Bx%7D%20%3D%20v_x%20%2B%20(%5Cvec%7B%5Cmathbf%7Bv%7D%7D%20%5Ccdot%20%5Cvec%7B%5Cmathbf%7Bn%7D%7D)%20%5Ccdot%20n_x#0
https://www.codecogs.com/eqnedit.php?latex=v'_%7By%7D%20%3D%20v_y%20%2B%20(%5Cvec%7B%5Cmathbf%7Bv%7D%7D%20%5Ccdot%20%5Cvec%7B%5Cmathbf%7Bn%7D%7D)%20%5Ccdot%20n_y#0

